

Bergamid[™] A70 G30 H

Polyamide 66

Key Characteristics

General		
Material Status	Commercial: Active	
Regional Availability	 Africa & Middle East Asia Pacific North America 	
Filler / Reinforcement	Glass Fiber, 30% Filler by Weight	
Features	Heat Stabilized	
RoHS Compliance	RoHS Compliant	
Forms	Pellets	

Technical Properties¹

		-	
Physical	Typical Value (English)	Typical Value (SI)	Test Method
Density ²	1.35 g/cm ³	1.35 g/cm ³	DIN 53479
K-Value ³	74.0 to 78.0	74.0 to 78.0	
lechanical	Typical Value (English)	Typical Value (SI)	Test Method
Tensile Modulus ⁴ (73°F (23°C))	1.45E+6 psi	10000 MPa	ISO 527-2
Tensile Stress (Break, 73°F (23°C))	26800 psi	185 MPa	ISO 527-2/5
Tensile Strain (Break, 73°F (23°C))	3.0 %	3.0 %	ISO 527-2/5
npact	Typical Value (English)	Typical Value (SI)	Test Method
Charpy Notched Impact Strength			ISO 179/A
-22°F (-30°C)	5.7 ft·lb/in²	12 kJ/m²	
73°F (23°C)	6.2 ft·lb/in ²	13 kJ/m²	
Charpy Unnotched Impact Strength			ISO 179
-22°F (-30°C)	36 ft·lb/in²	75 kJ/m²	
73°F (23°C)	40 ft·lb/in ²	85 kJ/m²	
nermal	Typical Value (English)	Typical Value (SI)	Test Method
Deflection Temperature Under Load			ISO 75-2/B
66 psi (0.45 MPa), Unannealed	482 °F	250 °C	
Deflection Temperature Under Load			ISO 75-2/A
264 psi (1.8 MPa), Unannealed	482 °F	250 °C	
Maximum Use Temperature			IEC 60216
5	266 °F	130 °C	
Short Time	428 °F	220 °C	
Melting Temperature (DSC)	502 °F	261 °C	ISO 3146
lectrical	Typical Value (English)	Typical Value (SI)	Test Method
Surface Resistivity	> 1.0E+12 ohms	> 1.0E+12 ohms	IEC 60093
Volume Resistivity	> 1.0E+14 ohms · cm	> 1.0E+14 ohms · cm	IEC 60093
Relative Permittivity (1 MHz)	3.70	3.70	IEC 60250
Comparative Tracking Index (Solution A)	500 V	500 V	IEC 60112
ammability	Typical Value (English)	Typical Value (SI)	Test Method
Flame Rating			Internal Metho
0.03 to 0.12 in (0.8 to 3.0 mm), ALL	HB	HB	

Copyright ©, 2023 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or fand y product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Bergamid[™] A70 G30 H

Processing Information

	•		
Injection	Typical Value (English)	Typical Value (SI)	
Drying Temperature	176 °F	80 °C	
Drying Time	3.0 to 4.0 hr	3.0 to 4.0 hr	
Suggested Max Moisture	0.20 %	0.20 %	
Processing (Melt) Temp	536 to 572 °F	280 to 300 °C	
Mold Temperature	122 to 194 °F	50 to 90 °C	

Notes

¹ Typical values are not to be construed as specifications.

² ±0.03 g/cm³

³ 96% H2SO4

⁴ 0.039 in/min (1 mm/min)

⁵ Continuous (GTP 50% Tensile)

CONTACT INFORMATION

North America	South America	Asia	Europe
Avon Lake, United States	Sao Paulo, Brazil	Shanghai, China	Pommerloch, Luxembourg
33587 Walker Road	Av. Francisco Nakasato, 1700	2F, Block C	19 Route de Bastogne
Avon Lake, OH, United States,	13295-000 Itupeva	200 Jinsu Road	Pommerloch, Luxembourg, L-9638
44012	Sao Paulo, Brazil	Pudong, 201206	+352 269 050 35
+1 440 930 1000	+55 11 4593 9200	Shanghai, China	
+1 844 4AVIENT		+86 (0) 21 6028 4888	

avient.com

Copyright ©, 2023 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your asplication, and you assume all risk and liability arising from your use of the Information and/or use or fany product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED IN WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.